
Smart Contract Code

Review And Security

Analysis Report

Customer: Strobe

Date: 04/07/2025

We express our gratitude to the Strobe team for the collaborative engagement that enabled

the execution of this Smart Contract Security Assessment.

Strobe Protocol's money market product supports permissionless lending and

overcollateralized borrowing.

Document

Name Smart Contract Code Review and Security Analysis Report for Strobe

Audited By Ataberk Yavuzer, Seher Saylik

Approved By Ivan Bondar

Website https://strobe.finance/

Changelog 04/06/2025 - Preliminary Report

04/07/2025 - Final Report

Platform XRPL EVM

Language Solidity

Tags

Lending, Borrowing, Cross-Chain, Interoperability, Incentives,

Integration

Methodology https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/strobe-protocol/strobe-v1-core

Commit c3281219a141c0575692d34c8c8d1c7ce0a16b40

Retest 78f82a280b1ae9d52167259d83e5f05e452a2ef7

2

https://strobe.finance/
https://hackenio.cc/sc_methodology
https://github.com/strobe-protocol/strobe-v1-core

Audit Summary

The system users should acknowledge all the risks summed up in the risks section of the

report

17 12 4 1

Total Findings Resolved Accepted Mitigated

Findings by Severity

Severity Count

Critical 1

High 3

Medium 7

Low 2

Vulnerability Severity

F-2025-10701 - Collateral Seizure Without Debt Repayment Critical

F-2025-10708 - Missing msg.sender == liquidator Check Allows Front‐Running and

Reward+ Collateral Theft

High

F-2025-10712 - Duplicate Reserve Addition in liquidate() Leads to Invalid Rates High

F-2025-10731 - Borrow Amount Is Always Lesser Than Advertised Amount Due To

Wrong Function Parameter

High

F-2025-10709 - Dynamic LTV and Liquidation Threshold Means Borrowers’ Terms

Can Change Retroactively

Medium

F-2025-10715 - Zero Oracle Price Check is Missing Medium

F-2025-10718 - Debt Calculation Logic is Broken for High-Index Reserves Medium

F-2025-10721 - Inconsistency Between the Documentation and Code: Missing

Base Rate Calculation

Medium

F-2025-10724 - Borrowing Functionality Will Be Lost When Loan-to-Value Greater

Than Liquidation Threshold

Medium

F-2025-10727 - Wrong Comparison on ReserveFactor Percentage Makes The Upper

Limit Inconsistent

Medium

F-2025-10750 - Lending Limit Is Not Enforced Medium

F-2025-10679 - Missing Replay Protection for Cross-Chain Commands in AxelarPool Low

F-2025-10734 - Hardcoded Gas Value Low

F-2025-10713 - Unbounded, Costly Loop in Collateral Checks Info

F-2025-10716 - Missing Zero Value Checks for liquidationThresholdPct and ltvPct Info

3

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/062737ac-b44e-40ef-9dbd-467c7557e7a8
https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/10d6ef96-1015-47cb-9ad3-73bf605dee0a
https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/00839652-98de-47a2-8d58-d39b8b56e619
https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/8044cb8f-c941-46df-ac98-6889b7ebffee
https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/6529b718-4611-42e1-b658-adae4447301b
https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/fbd83547-24a0-447f-8553-1d1bf4ea0529
https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/98154887-0da3-46f8-9ad5-00ac658d5798
https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/12692123-16da-4c09-af55-249127f2244e
https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/29bb5968-c99c-459a-8925-94a93b10827f
https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/7c46da34-3cb9-4b80-bb6e-8a1283b7eba8
https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/ace0d10d-5855-4c3e-8db2-2acf2dd86c90
https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/49bd24b8-6a1a-4c7b-b40e-a08e239642db
https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/b71f16d3-b09a-4bc0-bd3e-e6ff44a8e4b2
https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/31e51532-d4ed-4e64-87d9-341a51ca1739
https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/294e96b7-4b18-453a-a79d-f04a6cab8026

Vulnerability Severity

F-2025-10717 - Redundant applyLiquidationThreshold Parameter in Collateral

Assertion Functions

Info

F-2025-10751 - Missing Zero-Address Validation Info

4

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/51e997a5-8712-411d-bad3-7710ba9e5780
https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/d5e1ac08-f4db-4c41-a045-430e713dcc57

Documentation quality

Functional requirements are partially missed

Technical description is provided. The description for index calculations is not provided

Well-structured technical documentation covering protocol mechanics

Code quality

The code adapts some gas-inefficient usages

The development environment is configured

Test coverage

Code coverage of the project is 83.14%.

Proper Foundry configuration and development setup was provided

Mock testing files were provided for cross-chain interaction tests.

5

Table of Contents

System Overview 7

Privileged Roles 8

Potential Risks 10

Findings 11

Vulnerability Details 11

Disclaimers 56

Appendix 1. Definitions 57

Severities 57

Potential Risks 57

Appendix 2. Scope 58

Appendix 3. Additional Valuables 59

System Overview

Strobe is a cross-chain decentralized lending protocol that bridges traditional DeFi

lending mechanisms with XRPL (XRP Ledger) integration through Axelar's cross-chain

infrastructure. The protocol enables users to deposit, borrow, and manage collateral across

different blockchain networks while maintaining unified liquidity pools and interest rate

calculations.

The protocol operates on a dual-layer architecture:

Core Layer: Manages lending pool states, interest calculations, and collateral

management

Cross-Chain Layer: Handles token transfers and command execution via Axelar network

Users interact with the protocol from XRPL by sending cross-chain commands that are

executed on the Ethereum-based core contracts, with tokens being transferred back to XRPL

upon completion.

AxelarPool — Extends Pool functionality with cross-chain capabilities through Axelar's

Interchain Token Service:

Cross-Chain Command Processing: Handles DEPOSIT, WITHDRAW, BORROW, REPAY,

and collateral management commands

Token Transfer Orchestration: Manages interchain token transfers back to source

chains

Error Handling & Recovery: Implements trap mechanism for failed operations

Chain Validation: Ensures commands originate from accepted source chains only

Pool — The central contract managing all lending pool operations and state. It serves as a

generic pool contract that handles:

Insights:

If your collateral falls below the threshold, a single transaction can wipe out your

entire position in that debt token (no partial liquidations).

The Pool contract tracks each user’s scaled‐down deposits and debts across multiple

reserves, updating per‐token lending/borrowing indices on every deposit, borrow,

repay, or withdrawal to accrue interest and mint treasury fees.

Users can toggle collateral on or off for each reserve: disabling collateral triggers an

immediate undercollateralization check (reverting if debt isn’t fully covered), while

enabling collateral simply marks that reserve for inclusion in future collateral‐value

calculations.

User Account Management: Tracks deposits, debts, and collateral usage via XRPL

account hashes

Interest Calculation: Implements compound interest through lending/borrowing indices

Collateral Management: Manages user collateral flags and health factor calculations

Liquidation Logic: Enables liquidation of undercollateralized positions

Treasury Operations: Accumulates protocol fees through reserve factors

7

PoolConfig — Abstract contract inherited by Pool.sol that manages reserve configurations

and protocol parameters:

Reserve Management: Adding new token reserves with risk parameters (LTV, liquidation

threshold, etc.)

Risk Parameter Updates: Modifying LTV ratios, liquidation thresholds, and reserve

factors

Supply/Borrow Limits: Setting lending and borrowing caps per reserve

Oracle Integration: Connecting to price feeds via OracleConnectorHub

Treasury Management: Configuring protocol treasury address

InterestRateStrategyOne — Implements a dual-slope interest rate model for dynamic

rate calculations:

Utilization-Based Rates: Calculates borrowing/lending rates based on pool utilization

Two-Slope Model: Different rate curves before and after optimal utilization point

Parameter Validation: Ensures rate parameters stay within safe bounds

Overflow Protection: Validates maximum possible rates fit within uint104

IndexLogic — Pure mathematical library handling all interest calculations and scaling

operations:

Compound Interest: Calculates the latest lending/borrowing indices using a simple

interest formula

Treasury Calculations: Determines pending treasury amounts from reserve factors

Scaling Operations: Converts between raw balances and face amounts using indices

Time-Based Calculations: Handles timestamp-based interest accumulation

Constants — defines fixed protocol-wide values.

DataTypes — defines core types and data structures used across the protocol.

Privileged roles

Pool Owner: The Pool Owner has comprehensive control over protocol configuration and

represents the highest level of centralized control.

Capabilities:

Reserve Management: Add new token reserves with complete risk parameter

configuration

Risk Parameter Control: Modify LTV ratios (0-100%), liquidation thresholds (0-100%),

and reserve factors (0-100%)

Interest Rate Strategy: Update interest rate calculation contracts for any reserve

Supply & Borrow Limits: Set lending limits (supply caps) and borrowing limits (debt

caps)

Reserve Status: Enable/disable reserves for lending and borrowing operations

Treasury Management: Change protocol treasury address for fee collection

Oracle Configuration: Modify price feed sources for token pricing

8

AxelarPool Contract: The AxelarPool contract has exclusive access to core pool operations,

acting as the protocol's cross-chain gateway.

Capabilities:

User Operations: Execute deposits, withdrawals, borrowing, and repayment on behalf of

XRPL users

Collateral Management: Enable/disable collateral usage for user positions

Liquidation Execution: Perform liquidations of undercollateralized positions

Cross-Chain Coordination: Coordinate token transfers with lending operations

9

Potential Risks

Because admin updates take effect independently of cross-chain message ordering, a

malicious admin could observe pending deposits or borrows and then lower the

liquidation threshold or increase the LTV immediately before execution, causing sudden

under-collateralization and forced liquidations.

The owner's ability to arbitrarily enable or disable any reserve introduces centralization

risk, potentially blocking user withdrawals, deposits, or repayments and impacting

protocol functionality.

Parameter validation allows liquidation threshold < LTV, making users unliquidatable and

causing protocol to accumulate bad debt.

Heavy reliance on Band Protocol Oracle creates a single point of failure for price data that

affects the entire protocol.

No circuit breaker exists to halt protocol operations during critical vulnerabilities or market

stress.

The functioning of the system significantly relies on specific external structures (Axelar).

Any flaws or vulnerabilities in these contracts adversely affect the audited project,

potentially leading to security breaches or loss of funds.

The project utilizes libraries or contracts without security audits, potentially introducing

vulnerabilities. This compromises the security of the audited system, making it

susceptible to attacks exploiting these external weaknesses. Among these contracts,

Interchain Token Service, InterchainTokenExecutable and InterchainToken can be

considered third-party and unaudited dependencies.

Without time-locks on critical operations, there is no buffer to review or revert potentially

harmful actions, increasing the risk of rapid exploitation and irreversible changes.

The absence of restrictions on state variable modifications by the owner leads to arbitrary

changes, affecting contract integrity and user trust, especially during critical operations

like minting phases.

Allowing the admin to set oracle addresses without constraints or verification mechanisms

introduces the risk of incorrect or malicious oracle selection, affecting the accuracy of

data and potentially leading to financial losses.

10

Findings

Vulnerability Details

F-2025-10701 - Collateral Seizure Without Debt Repayment -

Critical

Description: In Pool.liquidate() , the ERC-20 repayment logic only executes when

liquidator != address(0) , a check intended to be true only for calls

originating from the Axelar gateway. However, because any external

user can set liquidator = address(0) , they can bypass the ERC-20

transfer entirely. This allows an attacker—bypassing address(0) as

liquidator and their own XRPL key as liquidationRewardRecipient —to seize

a borrower’s full collateral (plus bonus) without ever actually

repaying the debt.

As we can see, the liquidate() function can be called by setting the

liquidator to any address including zero;

function liquidate(

 address liquidator,

 bytes memory liquidationRewardRecipient,

 bytes memory liquidatee,

 address debtToken,

 uint256 amount,

 address collateralToken

) external reserveEnabled(debtToken) reserveEnabled(collateralToken) nonReent

rant {

 //...

 DataTypes.DebtRepaid memory debtRepaid =

 _repayDebtRouteInternal(liquidateeHash, debtToken, amount, liquidator)

;

 //...

}

And it skips the ERC-20 transfer part when the liquidator =

address(0);

 function _repayDebtInternal(...) internal {

 // ...

 if (liquidationRepaymentData.liquidator != address(0)) {

 //...

11

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/062737ac-b44e-40ef-9dbd-467c7557e7a8

 _updateRatesAndRawTotalBorrowing(...);

 IERC20(token).safeTransferFrom(

 liquidationRepaymentData.liquidator, address(_axelarPool), liq

uidationRepaymentData.repayAmount

);

 } else {

 _updateRatesAndRawTotalBorrowing(...);

 }

 //...

 }

Impact:

An attacker calling liquidate(address(0), // …); , forces the

protocol to reduce internal reserves by amount and then send all

collateral plus bonus to the attacker—without the protocol ever

receiving any debt tokens in return.

By repeating this attack on one or multiple undercollateralized

positions, the attacker empties the pool’s collateral reserves at

zero cost by stealing from the protocol.

Assets:

core/Pool.sol [https://github.com/strobe-protocol/strobe-v1-core]

Status: Fixed

Classification

Impact Rate: 5/5

Likelihood Rate: 5/5

Exploitability: Independent

Complexity: Simple

Severity: Critical

Recommendations

Remediation: Only allow the Axelar gateway to specify the liquidator as the zero

address. Otherwise, if called by a user with the liquidator =

address(0) , it should revert.

Resolution: In the fixed version, the function now explicitly checks:

if (liquidator == address(0)){

 require(msg.sender == _axelarPoolAddress, "Only the axelar pool can use th

12

e zero addressor liquidator.");

} else if (msg.sender != liquidator) {

 revert Errors.InvalidLiquidator();

}

Only _axelarPoolAddress can use address(0) as the liquidator , which

aligns with the original assumption in the protocol design. (Revised

commit: 2fcfec0)

Evidences

Reproduce:
Steps to reproduce the issue:

Setup a healthy loan position:

Alice deposits 100 units of token A, valued at $50 each, with

a 50% LTV → $2,500 collateral value.

She borrows 22.5 units of token B, valued at $100 each →

$2,250 debt.

Trigger liquidation eligibility:

Drop the price of token A to $40, reducing Alice’s collateral

value to $2,000.

Since $2,000 < $2,250, her position becomes liquidatable.

Begin attack from Bob’s EVM address:

Without holding or approving any token B, Bob calls the

liquidate() function.

Pass malicious parameters:

liquidator is set to address(0) to bypass the ERC-20 debt

repayment.

rewardRecipient is set to Bob’s XRPL key to receive seized

collateral.

The amount parameter claims to repay 6.25 token B—without

actually sending any.

Protocol is tricked:

Internally, the contract detects liquidator == address(0) and

skips the token transfer.

Still, it proceeds to seize 18.75 worth of token A from Alice

(including the bonus), transferring it to Bob’s XRPL balance.

Verify the theft:

Using pool storage, it’s confirmed Bob’s XRPL account

received the collateral without having paid any debt.

The pool loses assets; the attacker gains them at zero cost.

Test code:

function testMaliciousLiquidatorStealsCollateralWithoutPayingDebt() public {

 setupWithLoan();

13

 // Alice originally deposited 100 token A priced at $50 with 50% LTV.

 // => Collateral value: 100 * 50 * 0.5 = $2,500

 // => Borrowed 22.5 token B priced at $100 = $2,250 debt.

See more

Results:

Ran 1 test for test/HackenPool.t.sol:PoolTest

[PASS] testMaliciousLiquidatorStealsCollateralWithoutPayingDebt() (gas: 11365

44)

Logs:

 Bob stole funds: 18750000000000000000

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 1.40ms (690.17µs

CPU time)

14

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/062737ac-b44e-40ef-9dbd-467c7557e7a8

F-2025-10708 - Missing msg.sender == liquidator Check Allows

Front‐Running and Reward+ Collateral Theft - High

Description: The Pool.liquidate() function accepts a liquidator parameter but never

checks that msg.sender == liquidator . This oversight allows any attacker

to spoof a legitimate liquidator's address and trigger the

liquidation using that address's ERC-20 allowance.

The attacker can divert the seized collateral and bonus to their

own XRPL account by setting rewardRecipient to their XRPL key. As a

result, the honest liquidator loses both tokens and reward:

pool.liquidate(

 /* liquidator = */ genuineLiquidatorAddress,

 /* rewardRecipient = */ attackerXrplKey,

 ...

);

The spoofed transaction will:

pull the ERC-20 tokens from the genuine liquidator,

apply them to repay liquidatee's debt,

and send the seized collateral and bonus to the attacker.

Impact:

Anyone can front-run a liquidation and use someone else’s

approve() d allowance without consent.

The attacker's XRPL key receives the entire seized collateral,

including the original amount plus liquidation bonus.

The real liquidator loses tokens without getting any collateral or

compensation in return.

Assets:

core/Pool.sol [https://github.com/strobe-protocol/strobe-v1-core]

Status: Fixed

Classification

Impact Rate: 4/5

Likelihood Rate: 5/5

Exploitability: Independent

15

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/10d6ef96-1015-47cb-9ad3-73bf605dee0a

Complexity: Simple

Severity: High

Recommendations

Remediation: Enforce msg.sender == liquidator and at the beginning of liquidate() ,

add:

if (msg.sender != liquidator) {

 revert Errors.UnapprovedLiquidator();

}

This prevents any caller other than the specified liquidator from

using that address’s allowance.

Resolution: The issue is fixed by implementing the “ msg.sender == liquidator ” check

in the liquidate() function:

function liquidate(…) external reserveEnabled(debtToken) reserveEnabled(colla

teralToken) nonReentrant {

 if (liquidator == address(0)){

 require(msg.sender == _axelarPoolAddress, "Only the axelar pool can

use the zero addressor liquidator.");

 }

 else if (msg.sender != liquidator) {

 revert Errors.InvalidLiquidator();

}

(Revised commit: d5aa85f6)

Evidences

PoC

Reproduce:
Steps to reproduce the issue:

Prepare Borrower (Alice):

Deposit 100 tokens of tokenA priced at $50 each (total

collateral value = $2,500).

Borrow 22.5 tokens of tokenB priced at $100 each (total debt

= $2,250).

Collateral-to-debt ratio = safe (2,500 > 2,250).

Force Under-Collateralization:

Simulate a price drop of tokenA to $40.

16

New collateral value = 100 × 40 × 0.5 (LTV) = $2,000.

Now, Alice becomes eligible for liquidation since $2,000 <

$2,250.

Honest Liquidator Prepares (Bob):

Mint 6.25 tokens of tokenB to Bob's EVM address.

Approve the pool to pull 6.25 tokenB from Bob (ERC-20

approve()).

Attacker Front-Runs Liquidation:

Attacker sends a liquidation transaction with:

liquidator set to Bob’s EVM address (to exploit Bob’s ERC-

20 allowance),

rewardRecipient set to attacker’s own XRPL address (to

steal the reward).

Call proceeds without validating msg.sender == liquidator .

Liquidation Outcome:

The pool pulls 6.25 tokenB from Bob’s balance using his

allowance.

The borrower’s position is closed.

The entire seized collateral (including the liquidation

bonus) is transferred to the attacker’s XRPL key, not to Bob.

Resulting Exploit:

Bob loses his tokens but receives no reward.

The attacker gains 18.75 tokens of tokenA (which includes

the 20% liquidation bonus).

The protocol unintentionally rewards a malicious actor and

punishes the honest partici

See more

Results:

Ran 1 test for test/HackenPool.t.sol:PoolTest

[PASS] testLiquidateAllowsSpoofingLiquidator() (gas: 1167259)

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 2.44ms (938.17µs

CPU time)

Ran 1 test suite in 257.71ms (2.44ms CPU time): 1 tests passed, 0 failed, 0 s

kipped (1 total tests)

17

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/10d6ef96-1015-47cb-9ad3-73bf605dee0a

F-2025-10712 - Duplicate Reserve Addition in liquidate() Leads to

Invalid Rates - High

Description: In Pool.sol contract's liquidate() function, it updates

totalReserveAmounts[debtToken] by adding the repayment amount once,

then immediately calls the internal rate‐update routine—passing that

same repayment amount as a positive “delta” to be added again

when computing reserveBalanceAfter . As a result, the pool’s on‐chain

reserves are artificially inflated by twice the true inbound liquidity.

This inflated reserve number is then fed into the interest‐rate

strategy, yielding abnormally low borrowing and lending rates right

after any liquidation.

First addition (in liquidate()):

totalReserveAmounts[debtToken] += amount;

Second addition (inside rate update):

// In _updateRatesAndRawTotalBorrowing:

uint256 reserveBalanceBefore = totalReserveAmounts[token];

reserveBalanceAfter = reserveBalanceBefore + absDeltaReserveBalance; // absDe

ltaReserveBalance == amount

Because absDeltaReserveBalance is the same amount already added, the

pool’s reserves end up inflated by 2× the real incoming tokens.

As a result, the utilization ratio (totalDebt / totalReserves) is artificially

low, causing both lending and borrowing rates to drop more than

they should immediately after liquidation.

Impact:

Incorrect Borrow Rates: Borrowers see unnaturally low

interest shortly after a liquidation event, since the strategy

thinks there’s extra unused liquidity.

Incorrect Lending Returns: Depositors’ rates fall too much

because the pool appears over‐capitalized.

Market Distortion: If multiple liquidations occur before

reserves are used elsewhere, rates remain skewed over several

blocks. Attackers or large liquidators could exploit this window to

game borrow or deposit conditions.

Assets:

core/Pool.sol [https://github.com/strobe-protocol/strobe-v1-core]

18

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/00839652-98de-47a2-8d58-d39b8b56e619

Status: Fixed

Classification

Impact Rate: 4/5

Likelihood Rate: 5/5

Exploitability: Independent

Complexity: Medium

Severity: High

Recommendations

Remediation: Move the totalReserveAmounts[debtToken] += amount; line to after the

internal repayment call, so that the rate update only sees a single

increment. For example:

 function liquidate(...) external reserveEnabled(debtToken) reserveEnabled(co

llateralToken) nonReentrant {

 // ... rest of the code

 DataTypes.DebtRepaid memory debtRepaid =

 _repayDebtRouteInternal(liquidateeHash, debtToken, amount, liquidator

);

 totalReserveAmounts[debtToken] += amount;

 // ... rest of the code

}

Resolution: The Strobe team fixed the issue by moving the total reserve amount

addition line to after the internal repayment call:

function liquidate(…) external reserveEnabled(debtToken) reserveEnabled(colla

teralToken) nonReentrant {

 // …

 DataTypes.DebtRepaid memory debtRepaid = _repayDebtRouteInternal(

 liquidateeHash,

 debtToken,

 amount,

 liquidator

);

 totalReserveAmounts[debtToken] += amount;

 // …

}

19

(Revised commit: 5c0e4bd)

Evidences

PoC

Reproduce:
Steps to reproduce the issue:

Deploy and Initialize Pool with an Active Loan

Set up Alice’s position so she deposits token A as collateral

and borrows token B.

Record Pre-Liquidation Reserve and Borrowing Data

Read and store the pool’s totalReserveAmounts[tokenB] and the

reserve’s rawTotalBorrowing for token B. These will serve as the

baseline “before liquidation.”

Force Alice into an Undercollateralized State

Adjust the mock oracle so that token A’s price falls sharply.

This makes Alice’s collateral insufficient to back her existing

token B debt, qualifying her position for liquidation.

Prepare Bob as the Liquidator

Switch context to Bob’s address, mint exactly the same

amount of token B that Alice owes, and approve the pool to

pull that exact amount. This ensures Bob can repay Alice’s

debt in full.

Execute Liquidation

Have Bob call liquidate(...) with his own address, his XRPL

key as the reward recipient, Alice’s XRPL key as the

borrower, token B as the debt token, the exact borrowed

amount, and token A as the collateral token. The pool will

internally add Bob’s amount to totalReserveAmounts[tokenB] , then

call the rate-update helper with that same amount again,

effectively counting it twice.

Compute Expected Post-Liquidation Values

Expected Total Reserve for token B: should be initialReserve

+ borrowedAmount (only a single addition).

Expected Raw Total Borrowing: should be

initialRawTotalBorrowing - the raw units corresponding to the

borrowedAmount.

Expected Scaled-Up Debt: calculate from the updated raw

total bor

See more

Results:

Failing tests:

Encountered 1 failing test in test/HackenPool.t.sol:PoolTest

[FAIL: assertion failed: 81858582296121139153737 != 81910156250000000000000]

20

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/00839652-98de-47a2-8d58-d39b8b56e619

testReserveAmountAddedTwice() (gas: 1208185)

Encountered a total of 1 failing tests, 0 tests succeeded

21

F-2025-10731 - Borrow Amount Is Always Lesser Than Advertised

Amount Due To Wrong Function Parameter - High

Description: During the security audit, it was identified a critical parameter bug in

the core borrowing function that significantly reduces user borrowing

capacity below advertised levels. This bug prevents users from

accessing their full LTV (Loan-to-Value) borrowing rights, creating a

competitive disadvantage and false advertising.

The borrow() function incorrectly uses liquidation threshold logic

instead of LTV logic.

Pool.sol:

function borrow(DataTypes.XrplAccountHash borrowerHash, bytes memory borrower

, address token, uint256 amount)

 external

 reserveEnabled(token)

 onlyAxelarPool

{

 . . .

 // Confirm collateralization after all calculations

 _assertNotUnderCollateralized(borrowerHash, true); // @audit-issue - it s

hould be false

 . . .

}

With typical DeFi parameters (75% LTV, 85% liquidation threshold):

Maximum Borrowable Amount

Advertised (LTV-based): $1000 collateral × 75% = $750

Actual (Bug): $1000 collateral × 75% × 85% = $637.50

Capacity Loss: $750 - $637.50 = $112.50 (15% reduction)

Borrowing should use an LTV limit, not a liquidation threshold, to

allow maximum advertised borrowing capacity. Setting the

_assertNotUnderCollateralized(borrowerHash, true) to

_assertNotUnderCollateralized(borrowerHash, false) helps users to reach the

advertised amounts for the borrow() operation.

Assets:

core/Pool.sol [https://github.com/strobe-protocol/strobe-v1-core]

22

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/8044cb8f-c941-46df-ac98-6889b7ebffee

Status: Mitigated

Classification

Impact Rate: 3/5

Likelihood Rate: 5/5

Exploitability: Independent

Complexity: Medium

Severity: High

Recommendations

Remediation: Change the boolean parameter from true to false :

function borrow(...) external {

 // ... existing logic ...

 // Confirm collateralization after all calculations

 _assertNotUnderCollateralized(borrowerHash, false);

 totalReserveAmounts[token] -= amount;

 emit Borrowing(borrower, token, amount, amount);

}

Resolution: Mitigated: The finding was stated as a design choice by the client

with the following statement.

So, this is by design

It essentially acts as a risk factor that inflates the borrow

value relative to the underlying debt value.

e.g. using XRP:

- XRP price = $5

- I deposit 50 XRP → underlying value = 50 × $5 = $250

- The LTV ratio is 90%, so my borrowing power = $250 × 0.9

= $225

However, if I choose to borrow XRP, there’s an additional

constraint:

- The Liquidation Threshold (LT) for XRP is 70%, meaning

borrowing XRP directly requires inflating the borrow value to

borrowed amount / 70%.

To stay within the $225 limit:

- Maximum borrowable XRP = $225 × 0.7 / $5 = 31.5 XRP

Although I’m borrowing 31.5 XRP, its actual market value is

23

only $157.5. but for liquidation purposes, it’s counted as

$225. At that moment my collateral ratio is 1.And price

going down wont trigger liquidation as collateral value and

debt value equalized. However, it still being liquidated as

borrow interest always goes faster than the deposit interest,

causing the borrowing value > collateral value, collateral

ratio < 1

Evidences

PoC

Reproduce:
Test code:

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import {Test, console} from '../lib/forge-std/src/Test.sol';

import {Pool} from '../src/core/Pool.sol';

import {AxelarPool} from '../src/axelar/AxelarPool.sol';

import {InterestRateStrategyOne} from '../src/core/irs/InterestRateStrategyOn

e.sol';

import {MockERC20} from './mocks/MockERC20.sol';

import {MockStdReference} from './mocks/MockStdReference.sol';

import {BandProtocolConnector} from '../src/oracles/BandProtocolConnector.sol

';

import {OracleConnectorHub} from '../src/oracles/OracleConnectorHub.sol';

import {DataTypes} from '../src/core/libraries/DataTypes.sol';

import {Math} from '../src/math/Math.sol';

contract BorrowCollateralCheckBugPoC is Test {

 AxelarPool axelarPool;

 Pool pool;

 MockERC20 token;

 // Test users

 DataTypes.XrplAccountHash borrowerHash = DataTypes.bytesToXrplAccountHash

(abi.encode("borrower"));

 DataTypes.XrplAccountHash lenderHash = DataTypes.bytesToXrplAccountHash(a

bi.encode("lender"));

 // Protocol configuration

 uint8 constant LTV = 75; // 75% LTV (users should borr

ow up to 75%)

 uint8 constant LIQUIDATION_THRESHOLD = 85; // 85% liquidation threshold

24

 function setUp() public {

 // Setup protocol components

 token = new MockERC20("Token", "TKN", 18);

 DataTypes.InterestRateStrateyOneParams memory params = DataTypes.Inte

restRateStrateyOneParams({

 slope0: 15, slope1: 60, baseRate: 5, optimalRate: 75

 });

 InterestRateStrategyOne strategy = new InterestRateStrategyOne(params

);

 MockStdReference mockRef = new MockStdReference();

 mockRef.setReferenceData("TKN", "USD", 1e18, block.timestamp, block.t

imestamp);

 BandProtocolConnector connector = new BandProtocolConnector(mockRef,

"TKN", 40 minutes);

 OracleConnectorHub oracleHub = new OracleCo

See more

Results:

Logs:

 Setup: $10000 collateral, 75% LTV, 85% liquidation threshold

 Expected borrowing capacity: $7500

 Actual borrowing capacity: $6375

 User loss: $1125 (15% reduction)

 1. Testing bug-limited amount ($6,375):

 [SUCCESS] Can borrow $6375

 2. Testing advertised amount ($7,500):

 [EXPECTED] Cannot borrow advertised amount

25

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/8044cb8f-c941-46df-ac98-6889b7ebffee

F-2025-10709 - Dynamic LTV and Liquidation Threshold Means

Borrowers’ Terms Can Change Retroactively - Medium

Description: When a user borrows, the contract uses the current global ltvPct and

liquidationThresholdPct for all collateralization and withdrawal checks.

Because these parameters are owner-controlled and not “locked in”

per loan, the owner can change them at any time—instantly altering

the safety requirements for every existing borrower. This can force

perfectly valid positions into undercollateralized status or block

withdrawals, even though borrowers acted in good faith under the

original terms.

In PoolConfig.sol , both parameters are modified without delay or per-

loan snapshots:

function setLtv(address token, uint8 ltvPct) external reserveExists(token) on

lyOwner {

 if (ltvPct > DataTypes.ONE_HUNDRED_PCT) {

 revert Errors.LtvRange();

 }

 _reserves[token].ltvPct = ltvPct;

 emit LtvUpdate(token, ltvPct);

}

function setLiquidationThreshold(address token, uint8 liquidationThresholdPct

)

 external reserveExists(token) onlyOwner

{

 if (liquidationThresholdPct > DataTypes.ONE_HUNDRED_PCT) {

 revert Errors.LiquidationThresholdRange();

 }

 _reserves[token].liquidationThresholdPct = liquidationThresholdPct;

 emit LiquidationThresholdUpdate(token, liquidationThresholdPct);

}

Whenever a borrower takes out or adjusts a loan, the contract

invokes:

// Called after borrow() or withdraw()

_assertNotUnderCollateralized(borrowerHash, true);

// Internally:

function _assertNotUnderCollateralized(DataTypes.XrplAccountHash user, bool a

pplyLiquidationThreshold) internal view {

 if (!_isNotUndercollateralized(user, applyLiquidationThreshold)) {

 revert Errors.InsufficientCollateral();

 }

26

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/6529b718-4611-42e1-b658-adae4447301b

}

function _isNotUndercollateralized(DataTypes.XrplAccountHash user, bool apply

LiquidationThreshold)

 internal

 view

 returns (bool)

{

 // Fast track if no debt

 if (!userHasDebt(user)) {

 return true;

 }

 DataTypes.UserCollateralData memory data = calculateUserCollateralData(use

r, applyLiquidationThreshold);

 return data.collateralRequired <= data.collateralValue;

}

Here, calculateUserCollateralData(...) computes

collateralValue = ∑(user’s deposited USD value × current LTV)

collateralRequired = ∑(user’s debt USD value ÷ (liquidationThreshold / 100))

Both ltvPct and liquidationThresholdPct come directly from

_reserves[token] rather than from a per-loan snapshot.

Impact:

Surprise Liquidations:

A borrower deposits 1 000 TokensA at $100 each (collateral

= $100 000) and borrows $75 000 at 75% LTV.

Later, the owner instantly lowers ltvPct to 50%. Without

changing their collateral or debt, the borrower’s collateral

now safely backs only $50 000, so they become critically

undercollateralized. In the next block, the borrower can be

liquidated—even though they believed they had a 75%

safety buffer.

Blocked Withdrawals:

Suppose a borrower tries to withdraw part of their collateral

under the old threshold. If the owner raises

liquidationThresholdPct from 80% to 90%, that same withdrawal

will fail InsufficientCollateral() , locking collateral that was

previously withdrawable.

Centralization & Trust Risk:

Because any owner can call setLtv(...) or

setLiquidationThreshold(...) at any time, borrowers have no

guarantee their loan terms remain stable. An owner role

could immediately force arbitrary liquidations or freeze

collateral.

27

Assets:

core/Pool.sol [https://github.com/strobe-protocol/strobe-v1-core]

core/PoolConfig.sol [https://github.com/strobe-protocol/strobe-v1-

core]

Status: Accepted

Classification

Impact Rate: 5/5

Likelihood Rate: 3/5

Exploitability: Dependent

Complexity: Simple

Severity: Medium

Recommendations

Remediation: Store the ltvPct and liquidationThresholdPct at the moment of

borrowing in each position struct. During collateral checks, use those

stored values instead of the global ones.

Resolution: The finding is accepted and no further changes are applied to fix the

issue.

28

F-2025-10715 - Zero Oracle Price Check is Missing - Medium

Description: The Pool contract relies on the oracle price in multiple critical places

—specifically, when computing a user’s USD‐valued debt and USD‐

valued collateral. However, there is no guard against the oracle

returning a zero price. When getPrice(token) == 0 , it breaks the

collateral/debt logic :

Debt Value Drops to Zero → Free Collateral Removal

 function getUserDebtUsdValueForToken(DataTypes.XrplAccountHash user, addr

ess token)

 internal

 view

 returns (uint256)

 {

 // ... rest of the code

 uint256 debtPrice = _oracle.getPrice(token);

 uint256 debtValue = Math.mulDecimals(debtPrice, scaledUpDebtBalance,

decimals);

 return debtValue;

 }

If debtPrice == 0 , then debtValue == 0 . Later, in

_assertNotUnderCollateralized(...) , it checks:

collateralRequired = debtValue.rdiv(liquidationThreshold)

 = 0 / liquidationThreshold = 0

collateralValue = the enabled amount user deposited converted to USD

require(collateralValue ≥ collateralRequired) // always true since the colla

teralRequired = 0

As a result, a borrower with outstanding token B debt can suddenly

“owe” zero USD, letting them call withdrawAll(...) and drain every

token A collateral—despite still owing raw token B.

Impact

Debt Escape: If the oracle reports a debt token’s price as zero,

a borrower’s debtValue becomes zero, allowing them to call

withdrawAll() and remove all collateral despite still owing the raw

debt.

29

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/fbd83547-24a0-447f-8553-1d1bf4ea0529

Oracle Attack/DoS: A malicious or faulty oracle can set any

token price to zero, enabling theft of collateral or preventing

legitimate withdrawals, undermining protocol safety.

Assets:

core/Pool.sol [https://github.com/strobe-protocol/strobe-v1-core]

Status: Fixed

Classification

Impact Rate: 5/5

Likelihood Rate: 2/5

Exploitability: Independent

Complexity: Simple

Severity: Medium

Recommendations

Remediation: Before using an oracle price, require it to be strictly positive. For

example:

uint256 price = _oracle.getPrice(token);

if (price == 0) {

 revert Errors.InvalidPrice();

}

Resolution: The finding is fixed by implementing zero price checks in the out-of-

scope oracle contracts; BandProtocolConnector and OracleConnectorHub .

(Revised commit: 78f82a2)

30

F-2025-10718 - Debt Calculation Logic is Broken for High-Index

Reserves - Medium

Description: The DEBT_FLAG_FILTER constant is designed to check if a user has debt

in any reserve by masking the odd-numbered bits in the userFlags

mapping. However, the bitmask is incorrectly constructed and

excludes bit 255, which represents debt for reserve index 127 (the

highest possible reserve index).

One a character is missing from the DEBT_FLAG_FILTER . As the protocol

supports up to 127 reserves, this causes a significant problem for

high-index reserves.

Simply, DEBT_FLAG_FILTER returns;

b001010101010..[REDACTED]..1010

The representation of reserve debts has a length of 252. Considering

that the first two bytes are aimed for collateral reserve. The total

length allocated to debt calculations is 250 (250/2 => 125 Reserves)

Therefore, this logic will work for the first R0, R1, R2, …, and R124.

But it will stop working on Reserve125 as that extra character is

missing from the mask value.

Pool.sol:

// b10101010...1010

 uint256 constant DEBT_FLAG_FILTER = 0x2aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaa;

function userHasDebt(DataTypes.XrplAccountHash user) public view returns (boo

l) {

 uint256 map = userFlags[user];

 uint256 andResult = map & DEBT_FLAG_FILTER;

 return andResult != 0;

}

Assets:

core/Pool.sol [https://github.com/strobe-protocol/strobe-v1-core]

Status: Fixed

31

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/98154887-0da3-46f8-9ad5-00ac658d5798

Classification

Impact Rate: 5/5

Likelihood Rate: 2/5

Exploitability: Independent

Complexity: Simple

Severity: Medium

Recommendations

Remediation: Consider fixing the DEBT_FLAG_FILTER value by adding one extra a

character.

Resolution: The finding was fixed by the Strobe team after they corrected the

DEBT_FLAG_FILTER value in the commit e2b31a1.

Evidences

PoC

Reproduce:
Steps to Reproduce:

1. User deposits collateral in reserve 0

2. User borrows from reserve 127

3. userHasDebt() returns false (due to bug)

4. User calls disableCollateral() - NO checks performed

5. User withdraws all collateral while keeping debt

6. Protocol becomes insolvent

Test code:

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import {Test, console} from '../lib/forge-std/src/Test.sol';

import {Pool} from '../src/core/Pool.sol';

import {AxelarPool} from '../src/axelar/AxelarPool.sol';

import {InterestRateStrategyOne} from '../src/core/irs/InterestRateStrategyOn

e.sol';

import {MockERC20} from './mocks/MockERC20.sol';

import {MockStdReference} from './mocks/MockStdReference.sol';

import {BandProtocolConnector} from '../src/oracles/BandProtocolConnector.sol

';

32

import {OracleConnectorHub} from '../src/oracles/OracleConnectorHub.sol';

import {DataTypes} from '../src/core/libraries/DataTypes.sol';

contract DebtFlagFilterVulnerabilityTest is Test {

 AxelarPool axelarPool;

 Pool pool;

 MockERC20 tokenA;

 address deployer = address(0xDEAD);

 DataTypes.XrplAccountHash treasury = DataTypes.XrplAccountHash.wrap(bytes

32(uint256(0x2222)));

 DataTypes.XrplAccountHash userHash = DataTypes.bytesToXrplAccountHash(abi

.encode("user"));

 function setUp() public {

 vm.startPrank(deployer);

 // Deploy infrastructure (simplified from AxelarPool.t.sol pattern)

 tokenA = new MockERC20("Token A", "A", 18);

 MockStdReference mockRef = new MockStdReference();

 mockRef.setReferenceData("XRP", "USD", 1e18, block.timestamp, block.t

imestamp);

 BandProtocolConnector connector = new BandProtocolConnector(mockRef,

"XRP", 40 minutes);

 OracleConnectorHub oracleHub = new OracleConnectorHub();

 oracleHub.setTok

See more

Results:

[PASS] test_PracticalImpact_DisableCollateralBypass() (gas: 13005)

Logs:

 Normal case - Reserve 0 debt detected: true

 Vulnerable case - Reserve 127 debt detected: false

33

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/98154887-0da3-46f8-9ad5-00ac658d5798

F-2025-10721 - Inconsistency Between the Documentation and

Code: Missing Base Rate Calculation - Medium

Description: According to the official documentation, when the Utilization Rate

is lower than the Optimal Utilization Rate, the Borrow Rate is

calculated as follows:

R0 is the base rate in that calculation. However, the actual code

does not follow that specific invariant. The case when the

Utilization Rate equals zero was not covered.

The getInterestRates() function returns a 0% borrowing rate when

utilization is 0%, bypassing the configured base rate. This situation

might be problematic for protocol users as they expect to see the

actual Base Ratio for borrow rates. As it is more UI/UX bug, it was

observed that the protocol works as intended.

Additionally, inconsistency between the code and the official

documentation can lead to reliability issues.

InterestRateStrategyOne.sol:

function getInterestRates(uint256 reserveBalance, uint256 totalDebt)

 external

 view

 returns (DataTypes.InterestRates memory interestRates)

{

 uint256 utilizationRate = calculateUtilizationRate(reserveBalance, totalD

ebt);

 if (utilizationRate > 0) { // @audit-issue : zero utilization returns 0%

instead of 5% base rate

 uint256 borrowingRate = calculateBorrowRate(utilizationRate);

 uint256 lendingRate = borrowingRate.rmul(utilizationRate);

 // Checked no overflow using validateMaxBorrowingRate already

 interestRates.borrowingRate = uint104(borrowingRate);

 interestRates.lendingRate = uint104(lendingRate);

 }

}

When it occurs:

34

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/12692123-16da-4c09-af55-249127f2244e

The first borrower in any new reserve

The first borrower after all debt is repaid (therefore, can be

repetitive)

Other Zero-utilization scenarios

Assets:

core/irs/InterestRateStrategyOne.sol [https://github.com/strobe-

protocol/strobe-v1-core]

Status: Fixed

Classification

Impact Rate: 2/5

Likelihood Rate: 4/5

Exploitability: Independent

Complexity: Simple

Severity: Medium

Recommendations

Remediation: To fix this issue, the base rate should be included in the else-if-case

when the utilization rate is zero at a given time according to the

official documentation.

Resolution: The given issue is fixed by considering also zero utilization rate

possibility in the function:

 function getInterestRates(uint256 reserveBalance, uint256 totalDebt)

 external

 view

 returns (DataTypes.InterestRates memory interestRates)

 {

 uint256 utilizationRate = calculateUtilizationRate(reserveBalance, tot

alDebt);

 if (utilizationRate > 0) {

 uint256 borrowingRate = calculateBorrowRate(utilizationRate);

 uint256 lendingRate = borrowingRate.rmul(utilizationRate);

 interestRates.borrowingRate = uint104(borrowingRate);

 interestRates.lendingRate = uint104(lendingRate);

 }

 else{

 uint256 borrowingRate = strategyParams.baseRate;

 uint256 lendingRate = borrowingRate.rmul(utilizationRate);

35

 interestRates.borrowingRate = uint104(borrowingRate);

 interestRates.lendingRate = uint104(lendingRate);

 }

 }

(Revised commit: cabd7ce)

36

F-2025-10724 - Borrowing Functionality Will Be Lost When Loan-

to-Value Greater Than Liquidation Threshold - Medium

Description: The protocol allows configuring LTV (Loan-to-Value) higher than the

Liquidation Threshold, breaking fundamental DeFi lending logic.

Users cannot borrow at the advertised LTV percentage when LTV >

liquidation threshold . There is no prevention in the PoolConfig.sol to

prevent this situation from occurring.

When borrowing, the protocol uses a liquidation threshold for

collateralization checks instead of LTV:

PoolConfig.sol:

function setLtv(address token, uint8 ltvPct) external reserveExists(token) on

lyOwner {

 if (ltvPct > DataTypes.ONE_HUNDRED_PCT) {

 revert Errors.LtvRange();

 }

 _reserves[token].ltvPct = ltvPct;

 emit LtvUpdate(token, ltvPct);

}

PoolConfig.sol:

function setLiquidationThreshold(address token, uint8 liquidationThresholdPct

)

 external

 reserveExists(token)

 onlyOwner

{

 if (liquidationThresholdPct > DataTypes.ONE_HUNDRED_PCT) {

 revert Errors.LiquidationThresholdRange();

 }

 _reserves[token].liquidationThresholdPct = liquidationThresholdPct;

 emit LiquidationThresholdUpdate(token, liquidationThresholdPct);

}

Pool.sol:

37

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/29bb5968-c99c-459a-8925-94a93b10827f

function borrow(DataTypes.XrplAccountHash borrowerHash, bytes memory borrower

, address token, uint256 amount)

 external

 reserveEnabled(token)

 onlyAxelarPool

{

 . . .

 // Confirm collateralization after all calculations

 _assertNotUnderCollateralized(borrowerHash, true); // root cause

 . . .

}

Due to this broken logic and missing check, borrow functionality will

be completely lost when ltvPct > liquidationThresholdPct .

Assets:

core/Pool.sol [https://github.com/strobe-protocol/strobe-v1-core]

core/PoolConfig.sol [https://github.com/strobe-protocol/strobe-v1-

core]

Status: Accepted

Classification

Impact Rate: 4/5

Likelihood Rate: 5/5

Exploitability: Dependent

Complexity: Medium

Severity: Medium

Recommendations

Remediation: Consider implementing an extra check to prevent the case of LTV >

liquidation threshold .

Resolution: This finding was acknowledged by the Strobe team with the

following statement:

The borrowing capacity would be 600, as per the ltv

calculation finding. The liquidation threshhold would then be

600 * 0.75, so 450. It's actually ok for the liquidation thresh

38

hold to be higher than the LTV. After our discussion, I found

an example in the documentation that actually has this:

Overcollateralization and collateralization ratio | Strobe Proto

col

Evidences

PoC

Reproduce:
Steps to Reproduce:

1. User deposits: $1000

2. Protocol advertises: 80% LTV = $800 borrowing capacity

3. User can actually borrow: $600 (25% less than advertised)

Test code:

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import {Test, console} from '../lib/forge-std/src/Test.sol';

import {Pool} from '../src/core/Pool.sol';

import {AxelarPool} from '../src/axelar/AxelarPool.sol';

import {InterestRateStrategyOne} from '../src/core/irs/InterestRateStrategyOn

e.sol';

import {MockERC20} from './mocks/MockERC20.sol';

import {MockStdReference} from './mocks/MockStdReference.sol';

import {BandProtocolConnector} from '../src/oracles/BandProtocolConnector.sol

';

import {OracleConnectorHub} from '../src/oracles/OracleConnectorHub.sol';

import {DataTypes} from '../src/core/libraries/DataTypes.sol';

contract SimpleLTVIssuePoC is Test {

 AxelarPool axelarPool;

 Pool pool;

 MockERC20 token;

 DataTypes.XrplAccountHash userHash = DataTypes.bytesToXrplAccountHash(abi

.encode("user"));

 function setUp() public {

 // Deploy protocol with standard setup

 token = new MockERC20("Token", "TKN", 18);

 MockStdReference mockRef = new MockStdReference();

 mockRef.setReferenceData("TKN", "USD", 1e18, block.timestamp, block.t

imestamp);

39

https://strobe-protocol.gitbook.io/strobe-protocol/money-market/overcollateralization-and-collateralization-ratio

 BandProtocolConnector connector = new BandProtocolConnector(mockRef,

"TKN", 40 minutes);

 OracleConnectorHub oracleHub = new OracleConnectorHub();

 oracleHub.setTokenConnector(address(token), address(connector));

 DataTypes.InterestRateStrateyOneParams memory params = DataTypes.Inte

restRateStrateyOneParams({

 slope0: 8, slope1: 100, baseRate: 5, optimalRate: 65

 });

 InterestRateStrategyOne strategy = new InterestRateStrategyOne(params

);

 axelarPool = new AxelarPool(

 address(0x1a7580C2ef5D48

See more

Results:

Logs:

 User deposits: $1000

 Protocol advertises: 80% LTV = $800 borrowing capacity

 User can actually borrow: $600 (25% less than advertised)

40

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/29bb5968-c99c-459a-8925-94a93b10827f

F-2025-10727 - Wrong Comparison on ReserveFactor Percentage

Makes The Upper Limit Inconsistent - Medium

Description: A reserve factor is a fundamental economic parameter in DeFi

lending protocols that determines what percentage of interest

earned from borrowers goes to the protocol treasury (fees) versus

being distributed to lenders.

Borrower pays 10% APY on a loan

Reserve factor = 15%

Protocol keeps: 15% × 10% = 1.5% APY as fees

Lenders receive: 10% - 1.5% = 8.5% APY

The protocol incorrectly validates reserve factor percentages by

comparing them against Math.RAY (1e27) instead of

DataTypes.ONE_HUNDRED_PCT (100) . This bug allows protocol administrators

to accidentally configure economically impossible fee structures that

could lead to protocol insolvency.

The _setReserveFactor() function accepts uint8 reserveFactorPct (0-255

range). It compares that parameter against Math.RAY =

1,000,000,000,000,000,000,000,000,000 . The problem is, that no uint8 value

can exceed 1e27 .

All input values (0-255) pass validation, including invalid

percentages. That makes the higher limit unusable.

Additionally, in case the malicious owner sets the reserveFactorPct to

its highest possible limit (255), the protocol can send all assets to the

treasury, or, the actual protocol logic can be completely broken.

PoolConfig.sol:

function _setReserveFactor(address token, uint8 reserveFactorPct) internal re

serveExists(token) {

 if (reserveFactorPct > Math.RAY) {

 revert Errors.ReserveFactorRange();

 }

 _reserves[token].reserveFactorPct = reserveFactorPct;

 emit ReserveFactorUpdate(token, reserveFactorPct);

}

Assets:

core/PoolConfig.sol [https://github.com/strobe-protocol/strobe-v1-

core]

41

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/7c46da34-3cb9-4b80-bb6e-8a1283b7eba8

Status: Fixed

Classification

Impact Rate: 4/5

Likelihood Rate: 5/5

Exploitability: Dependent

Complexity: Simple

Severity: Medium

Recommendations

Remediation: Fix the aforementioned function as below:

function _setReserveFactor(address token, uint8 reserveFactorPct) internal re

serveExists(token) {

 if (reserveFactorPct > DataTypes.ONE_HUNDRED_PCT) {

 revert Errors.ReserveFactorRange();

 }

 _reserves[token].reserveFactorPct = reserveFactorPct;

 emit ReserveFactorUpdate(token, reserveFactorPct);

}

Resolution: The finding was resolved by the Strobe team in commit 748250d.

The suggested fix was implemented.

42

F-2025-10750 - Lending Limit Is Not Enforced - Medium

Description: Although the protocol defines a lendingLimit for each reserve, this

value is never checked during deposit operations. As a result, users

can deposit arbitrary amounts of tokens into the pool, even when the

lendingLimit has been set.

The relevant function:

function deposit(...) external {

 ...

 reserve.rawTotalDeposit += scaledDownAmount;

}

Impact:

Excessive deposits in one token may distort lending/borrowing

dynamics.

The lendingLimit is meant to cap exposure to volatile or

manipulated assets, but its lack of enforcement nullifies that

control.

Assets:

core/Pool.sol [https://github.com/strobe-protocol/strobe-v1-core]

Status: Fixed

Classification

Impact Rate: 2/5

Likelihood Rate: 5/5

Exploitability: Independent

Complexity: Simple

Severity: Medium

Recommendations

Remediation: Enforce the lendingLimit in deposit-related functions by checking that

rawTotalDeposit + amount <= lendingLimit . Revert the transaction if the new

deposit would exceed the cap.

43

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/ace0d10d-5855-4c3e-8db2-2acf2dd86c90

Resolution: The issue is fixed by enforcing the per-reserve lendingLimit by

reverting deposits that would cause the total scaled-up deposits to

exceed the configured cap:

 function _assetLendingLimitSatisfied(address token) internal view {

 uint256 scaledUpLend = IndexLogic.getScaledUpAmount(_poolConfig.getRes

erveRawTotalDeposit(token), _poolConfig.getReserveLendingIndex(token));

 if (_poolConfig.getReserveLendingLimit(token) < scaledUpLend) {

 revert Errors.LendingLimitExceeded();

 }

 }

(Revised commit: b098c9e)

44

F-2025-10679 - Missing Replay Protection for Cross-Chain

Commands in AxelarPool - Low

Description: The AxelarPool contract inherits executeWithInterchainToken(commandId, …)

from InterchainTokenExecutable , using commandId as a unique identifier for

each cross-chain message. However, AxelarPool does not track or

reject previously seen commandId 's, allowing a malicious or

misbehaving relayer to replay the same message multiple times.

This opens the protocol to unintended duplicate deposits,

withdrawals, borrows, or repayments, each of which can be used to

drain liquidity or inflate debt positions.

Impact:

Duplicate Value Flows:

Deposits: A single deposit message replayed twice turns a

100-token deposit into 200, crediting unintended balance.

Withdrawals: A withdrawal command replay could drain

more tokens than originally intended.

Borrows/Repays: Borrow or repay calls replayed can

manipulate user debt and liquidity, potentially freezing or

draining the pool.

Economic Manipulation: Attackers can exploit duplicate

borrows and repayments to push utilization, skew interest‐rate

logic, or withdraw collateral.

Assets:

axelar/AxelarPool.sol [https://github.com/strobe-protocol/strobe-

v1-core]

Status: Fixed

Classification

Impact Rate: 5/5

Likelihood Rate: 2/5

Exploitability: Dependent

Complexity: Simple

Severity: Low

Recommendations

45

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/49bd24b8-6a1a-4c7b-b40e-a08e239642db

Remediation: Implement a processed Mapping

mapping(bytes32 => bool) private processed;

Reject replays

At the start of _executeWithInterchainToken , add:

require(!processed[commandId], Errors.CommandAlreadyExecuted());

processed[commandId] = true;

Emit an Event

Optionally emit CommandExecuted(bytes32 commandId, address executor) to

facilitate off-chain monitoring of command processing.

Resolution: The issue is fixed by implementing executedCommands mapping that

tracks all the command IDs:

 function _executeWithInterchainToken(...) internal override {

 if(executedCommands[commandId]) {

 revert("Replay detected");

 }

 executedCommands[commandId] = true;

 // ...

 }

(Revised commit: 3238965)

46

F-2025-10734 - Hardcoded Gas Value - Low

Description: The AxelarPool contract contains a critical implementation flaw

where all cross-chain token transfers use a hardcoded gasValue of 0 ,

potentially causing transaction failures on destination chains. This

affects all major protocol operations including withdrawals,

borrowing, and trapped token recovery.

In all InterchainTokenService.interchainTransfer() calls, hardcoded gasValue:

0 parameter was used instead of proper gas estimation.

AxelarPool.sol:

InterchainTokenService(interchainTokenService).interchainTransfer(

 requestedTokenId, // bytes32 tokenId,

 acceptedSourceChain, // string calldata destinationChain,

 sourceAddress, // bytes calldata destinationAddress,

 requestedAmount, // uint256 amount,

 "", // bytes calldata metadata,

 // TODO: how do we estimate gas?

 0 // uint256 gasValue

);

This situation creates confusion and reliability issues for protocol

users.

Status: Fixed

Classification

Impact Rate: 2/5

Likelihood Rate: 3/5

Exploitability: Independent

Complexity: Simple

Severity: Low

Recommendations

Remediation: Consider fixing TODO messages from the code and implement

functionally working gas estimations for inter-chain operations.

47

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/b71f16d3-b09a-4bc0-bd3e-e6ff44a8e4b2

Resolution: The finding was fixed in commit e322521. The gas estimation

design was completely changed. It will now be sent as msg.value

rather than a function argument, and each acceptedGasTokenId will be

checked.

48

F-2025-10713 - Unbounded, Costly Loop in Collateral Checks -

Info

Description: The function calculateUserCollateralData(...) iterates over all configured

reserves every time it needs to compute a user’s total collateral

value and required collateral. Because the number of reserves

(_reserveCount) is unbounded up to a protocol‐wide maximum (127 in

this implementation), each call can consume significant—and

growing—gas. Over time, as more reserves are added, the per‐user

collateral check becomes increasingly expensive. This can lead to:

High Gas Costs for Normal Operations

Any action requiring a collateral check (borrow, withdraw,

liquidation eligibility, etc.) invokes calculateUserCollateralData(...) . If

there are, say, 100 reserves, the loop runs 100 iterations even

though the user may only have deposited assets in 2 or 3 of

them.

As reserves grow, gas per operation scales linearly, making

routine user interactions prohibitively expensive.

Potential Denial‐of‐Service or Revert

In the worst case, a user with deposits may trigger a collateral

check that exceeds the block gas limit, causing transactions

(withdraw, borrow, repay, liquidation) to revert.

Assets:

core/Pool.sol [https://github.com/strobe-protocol/strobe-v1-core]

Status: Accepted

Classification

Impact Rate: 1/5

Likelihood Rate: 2/5

Exploitability: Independent

Complexity: Simple

Severity: Info

Recommendations

49

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/31e51532-d4ed-4e64-87d9-341a51ca1739

Remediation: Instead of looping over every configured reserve, keep a simple list

(or set) of which reserves each user has nonzero collateral in. Then

have calculateUserCollateralData(...) only iterate that per-user list. This

way, gas costs grow with a user’s actual positions rather than the

total number of reserves.

Resolution: The risk of the given finding is accepted and no further changes are

applied to fix the issue.

50

F-2025-10716 - Missing Zero Value Checks for

liquidationThresholdPct and ltvPct - Info

Description: The protocol allows setting the liquidationThresholdPct and ltvPct

parameters to any value below 100%. However, setting either of

them to zero can lead to unintended or unsafe behavior:

In the getCollateralUsdValueRequiredForToken() function, when

applyLiquidationThreshold == true , the debt value is divided by the scaled

liquidationThresholdPct :

uint256 liquidationThreshold = Math.scalePct(getReserveData(token).liquidatio

nThresholdPct);

uint256 collateralRequired = debtValue.rdiv(liquidationThreshold); // potenti

al division by zero

If liquidationThresholdPct is 0, the scaled value becomes zero, leading

to a division-by-zero error and a revert.

Similarly, ltvPct is used to discount collateral in:

return collateralValue.rmul(Math.scalePct(reserve.ltvPct));

If ltvPct is 0, the function will always return 0, rendering all collateral

valueless — which can break deposits, withdraws, and borrowing

logic silently.

Impact:

Division-by-Zero Reverts: Any on-chain calculation relying on

liquidationThresholdPct may revert if it's 0 , disrupting core

functions like collateral checks and debt assessments.

Silent Logic Failures: An ltvPct of 0 will silently invalidate all

collateral usage, preventing borrowing and potentially blocking

deposits or undercollateralization checks.

Inconsistent Protocol Configuration: Zero values for these

parameters don’t appear to have a practical use case and

suggest a misconfiguration that should be restricted.

Assets:

core/PoolConfig.sol [https://github.com/strobe-protocol/strobe-v1-

core]

Status: Fixed

51

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/294e96b7-4b18-453a-a79d-f04a6cab8026

Classification

Impact Rate: 3/5

Likelihood Rate: 1/5

Exploitability: Dependent

Complexity: Simple

Severity: Info

Recommendations

Remediation: Enforce a non-zero minimum (e.g., > 0) for both ltvPct and

liquidationThresholdPct in reserve setup functions.

Resolution: The required zero value checks are implemented for both ltvPct and

liquidationThresholdPct variables. (Revised commit: 78f82a2)

52

F-2025-10717 - Redundant applyLiquidationThreshold Parameter

in Collateral Assertion Functions - Info

Description: In Pool contract, both _assertNotUnderCollateralized() and

_assertNotOvercollateralized() accept a bool applyLiquidationThreshold

parameter, allowing collateral checks to optionally apply the

liquidationThresholdPct . However:

In all usages of _assertNotUnderCollateralized() , the parameter is

always passed as true .

In all usages of _assertNotOvercollateralized() , the parameter is

always passed as false .

This effectively turns the parameter into a hardcoded constant per

function, making its presence misleading. Despite being designed to

support conditional behavior, the functions are never used in a

dynamic way.

Dead or redundant logic branches add complexity and room for

silent failure. It may be assumed conditional logic exists where it

does not, potentially leading to incorrect assumptions or misuses.

Assets:

core/Pool.sol [https://github.com/strobe-protocol/strobe-v1-core]

Status: Accepted

Classification

Impact Rate: 1/5

Likelihood Rate: 5/5

Exploitability: Independent

Complexity: Simple

Severity: Info

Recommendations

Remediation: If there are no plans to pass varying values in the future, consider

removing the parameter from both functions and hardcoding the

respective logic (true or false).

53

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/51e997a5-8712-411d-bad3-7710ba9e5780

F-2025-10751 - Missing Zero-Address Validation - Info

Description: Throughout the system contracts, there are several functions and

constructor parameters that do not enforce a check against the zero

address (address(0)). Specifically:

setTreasury() function allows setting the treasury field to bytes32(0)

(or the zero address, when converted), with no validation. This

could inadvertently disable treasury-based fees or redirect

rewards to a null location.

Pool 's constructor takes three addresses (poolConfigManager ,

oracleConnectorHub , and axelarPool) and a treasury hash, but there is

no check to ensure any of these inputs are non-zero. As a result,

deploying with a zero address would break owner-based logic,

price feeds, Axelar routing, or fee collection immediately.

_addReserve(address token, IInterestRateStrategy strategy, ...) registers a

new reserve without verifying that token or strategy are non-zero.

Allowing either to be zero corrupts reserve mappings and

undermines reserve existence checks.

_setInterestRateStrategy(address token, address newStrategy) updates a

reserve’s interest-rate strategy but does not verify that token or

newStrategy are non-zero. Setting either to zero breaks rate

calculations or marks a non-existent reserve as valid.

Assets:

core/Pool.sol [https://github.com/strobe-protocol/strobe-v1-core]

core/PoolConfig.sol [https://github.com/strobe-protocol/strobe-v1-

core]

Status: Fixed

Classification

Impact Rate: 4/5

Likelihood Rate: 1/5

Exploitability: Dependent

Complexity: Simple

Severity: Info

Recommendations

54

https://portal.hacken.io/App/Projects/Details/fcec4226-8838-4553-8226-869489fb58dd/Finding/d5e1ac08-f4db-4c41-a045-430e713dcc57

Remediation: Insert require(... != address(0)) checks at the beginning of every

constructor, public, and external function that accepts an address

parameter. This guarantees protocol invariants and prevents any

zero‐address from entering critical state.

Resolution: Required missing zero-address validations are implemented for the

mentioned functions. (Revised commit: 78f82a2)

55

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at

the time of the writing of this report, with cybersecurity vulnerabilities and issues in smart

contract source code, the details of which are disclosed in this report (Source Code); the

Source Code compilation, deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and

security of the code. The report covers the code submitted and reviewed, so it may not be

relevant after any modifications. Do not consider this report as a final and sufficient

assessment regarding the utility and safety of the code, bug-free status, or any other contract

statements.

While we have done our best in conducting the analysis and producing this report, it is

important to note that you should not rely on this report only — we recommend proceeding

with several independent audits and a public bug bounty program to ensure the security of

smart contracts.

English is the original language of the report. The Consultant is not responsible for the

correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its

programming language, and other software related to the smart contract can have

vulnerabilities that can lead to hacks. Thus, the Consultant cannot guarantee the explicit

security of the audited smart contracts.

56

Appendix 1. Definitions

Severities

When auditing smart contracts, Hacken is using a risk-based approach that considers

Likelihood, Impact, Exploitability and Complexity metrics to evaluate findings and score

severities.

Reference on how risk scoring is done is available through the repository in our Github

organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the

loss of user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or

have a more limited scope, but can still lead to the loss of user funds or contract

state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most

cases, cannot lead to asset loss. Contradictions and requirements violations. Major

deviations from best practices are also in this category.

Low
Major deviations from best practices or major Gas inefficiency. These issues will

not have a significant impact on code execution.

Potential Risks

The "Potential Risks" section identifies issues that are not direct security vulnerabilities but

could still affect the project’s performance, reliability, or user trust. These risks arise from

design choices, architectural decisions, or operational practices that, while not immediately

exploitable, may lead to problems under certain conditions. Additionally, potential risks can

impact the quality of the audit itself, as they may involve external factors or components

beyond the scope of the audit, leading to incomplete assessments or oversight of key areas.

This section aims to provide a broader perspective on factors that could affect the project's

long-term security, functionality, and the comprehensiveness of the audit findings.

57

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/strobe-protocol/strobe-v1-core

Commit c3281219a141c0575692d34c8c8d1c7ce0a16b40

Retest 78f82a280b1ae9d52167259d83e5f05e452a2ef7

Whitepaper Strobe Protocol Gitbook

Requirements README.md

Technical Requirements README.md

Asset Type

axelar/AxelarPool.sol [https://github.com/strobe-protocol/strobe-v1-core]
Smart

Contract

core/irs/InterestRateStrategyOne.sol [https://github.com/strobe-

protocol/strobe-v1-core]

Smart

Contract

core/libraries/Constants.sol [https://github.com/strobe-protocol/strobe-v1-core]
Smart

Contract

core/libraries/DataTypes.sol [https://github.com/strobe-protocol/strobe-v1-core]
Smart

Contract

core/libraries/IndexLogic.sol [https://github.com/strobe-protocol/strobe-v1-

core]

Smart

Contract

core/Pool.sol [https://github.com/strobe-protocol/strobe-v1-core]
Smart

Contract

core/PoolConfig.sol [https://github.com/strobe-protocol/strobe-v1-core]
Smart

Contract

math/Math.sol [https://github.com/strobe-protocol/strobe-v1-core]
Smart

Contract

oracles/BandProtocolConnector.sol [https://github.com/strobe-protocol/strobe-

v1-core]

Smart

Contract

oracles/BaseConnector.sol [https://github.com/strobe-protocol/strobe-v1-core]
Smart

Contract

oracles/OracleConnectorHub.sol [https://github.com/strobe-protocol/strobe-v1-

core]

Smart

Contract

58

https://github.com/strobe-protocol/strobe-v1-core
https://strobe-protocol.gitbook.io/
https://github.com/strobe-protocol/strobe-v1-core/blob/main/README.md
https://github.com/strobe-protocol/strobe-v1-core/blob/main/README.md

Appendix 3. Additional Valuables

Verification of System Invariants

During the audit of the Strobe Protocol, Hacken followed its methodology by performing

invariant testing on the project's main functions. Foundry, a tool used in the Solidity testing

framework, was employed to check how the protocol behaves under various input conditions.

Due to the complex and dynamic interactions within the protocol, unexpected edge cases

might arise. Therefore, it was important to use invariant testing to ensure that several system

invariants hold true in all situations.

Invariant testing enables the input of numerous random data points into the system,

facilitating the identification of issues that regular testing may overlook. 25 invariants were

tested with significant runs. This thorough testing identified some broken invariants.

Invariant Test Case Description
Test

Result

Total Reserve Non-

Negative

invariant_CR01_totalRese

rveAmountsNonNegative()

Total reserve amounts remain non-

negative
Passed

Lending Index

Monotonicity

invariant_CR02_lendingIn

dexMonotonicity()

Lending index always >= RAY, never

decreases
Passed

Borrowing Index

Monotonicity

invariant_CR03_borrowing

IndexMonotonicity()

Borrowing index always >= RAY, never

decreases
Passed

User Deposits Non-

Negative

invariant_AC04_userDepos

itsNonNegative()

User deposit balances must always be

≥ 0 to prevent negative balances
Passed

User Debts Non-

Negative

invariant_AC05_userDebts

NonNegative()

User debt balances must always be ≥ 0

to prevent negative debt
Passed

Total Debt Within Limit
invariant_PR06_totalDebt

WithinBorrowingLimit()

Total protocol debt must not exceed

configured borrowing limit
Passed

Reserve Accounting

Consistency

invariant_AC07_reserveAc

countingConsistency()

Available reserves must be ≤ total

deposits for accounting integrity
Passed

LTV Parameter

Validation

invariant_PM08_ltvWithin

ValidRange()

Loan-to-Value ratio must be ≤ 100% as

per protocol specification
Passed

Liquidation Threshold

Validation

invariant_PM09_liquidati

onThresholdWithinValidRa

nge()

Liquidation threshold must be ≤ 100%

for valid liquidation logic
Passed

Reserve Factor

Validation

invariant_PM10_reserveFa

ctorWithinValidRange()

Reserve factor validation broken

(accepts 203% > 100%)
Failed

Utilization Rate

Bounds

invariant_RT11_utilizati

onRateWithinBounds()

Utilization rate must be ≤ 100% for

mathematical consistency
Passed

Interest Rate

Relationship

invariant_RT12_lendingRa

teLowerThanBorrowingRate

Lending rate must be ≤ borrowing rate

for economic viability

Passed

59

https://book.getfoundry.sh/forge/invariant-testing

Invariant Test Case Description
Test

Result

()

Interest Rate

Reasonableness

invariant_RT13_interestR

atesWithinReasonableBoun

ds()

Interest rates must be ≤ 1000% APY to

prevent unreasonable rates
Passed

Index Monotonic

Growth

invariant_MT14_indicesMo

notonicallyIncreasing()

Both indices must only increase over

time for mathematical consistency
Passed

Scaling Operation

Consistency

invariant_MT15_scalingOp

erationsConsistent()

Scale down → scale up operations must

be consistent within rounding tolerance
Passed

Reserve Enabled

Status

invariant_CF16_reserveAl

waysEnabled()

Active reserves must always remain

enabled for protocol operations
Passed

Valid Interest Rate

Strategy

invariant_CF17_reserveHa

sValidInterestRateStrate

gy()

Reserves must have valid (non-zero)

interest rate strategy addresses
Passed

Strategy Parameter

Immutability

invariant_CF18_strategyP

arametersRemainConstant(

)

Interest rate strategy parameters must

remain constant post-deployment
Passed

Deposit Traceability

invariant_AC19_totalDepo

sitsTraceableViaRawDepos

its()

Total deposits must equal raw deposits

× lending index for audit trail
Passed

Zero Utilization Base

Rate

invariant_BD20_zeroUtili

zationBaseRateValidation

()

Zero utilization returns 0% instead of

5% base rate
Failed

LTV-Liquidation

Relationship

invariant_HF21_ltvLessTh

anLiquidationThreshold()

LTV vs liquidation threshold logic

broken (21% > 7%)
Failed

Health Factor

Consistency

invariant_CL22_healthFac

torConsistency()

Users with debt must maintain health

factor > 1 for liquidation safety
Passed

Protocol Solvency
invariant_EC23_protocolS

olvencyMaintained()

Protocol must remain solvent: available

liquidity + debts ≥ deposit obligations
Passed

Index Precision

Maintenance

invariant_PR24_indexPrec

isionMaintained()

Indices must not exceed 10x RAY to

prevent precision degradation
Passed

Liquidation Threshold

Logic

invariant_LQ25_liquidati

onThresholdExceedsLTV()

Same as HF21, liquidation threshold

logic broken (1% < 10%)
Failed

All detected findings were addressed in the report.

Additional Recommendations

The smart contracts in the scope of this audit could benefit from the introduction of automatic

emergency actions for critical activities, such as unauthorized operations like ownership

changes or proxy upgrades, as well as unexpected fund manipulations, including large

withdrawals or minting events. Adding such mechanisms would enable the protocol to react

60

automatically to unusual activity, ensuring that the contract remains secure and functions as

intended.

To improve functionality, these emergency actions could be designed to trigger under specific

conditions, such as:

Detecting changes to ownership or critical permissions.

Monitoring large or unexpected transactions and minting events.

Pausing operations when irregularities are identified.

These enhancements would provide an added layer of security, making the contract more

robust and better equipped to handle unexpected situations while maintaining smooth

operations.

61

